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Abstract
Sharing GPUs in the cloud is cost effective and can facili-
tate the adoption of hardware accelerator enabled cloud. But
sharing causes interference between co-located VMs and
leads to performance degradation. In this paper, we proposed
an interference-aware VM scheduler at the cluster level with
the goal of minimizing interference. NVIDIA vGPU pro-
vides sharing capability and high performance, but it has
unique performance characteristics, which have not been
studied thoroughly before. Our study reveals several key ob-
servations. We leverage our observations to construct models
based on machine learning techniques to predict interference
between co-located VMs on the same GPU. We proposed a
system architecture leveraging our models to schedule VMs
to minimize the interference. The experiments show that our
observations improves the model accuracy (by 15% ˜ 40%)
and the scheduler reduces application run-time overhead by
24.2% in simulated scenarios.

1. Introduction
An increasing number of workloads are being migrated to
cloud, such as virtual desktop infrastructure (VDI), big data
analytics for business intelligence, facial recognition, natu-
ral language processing, etc [1]. General Purpose Graphics
Processing Unit (GPGPU) is one of the major hardware ac-
celerators that has been commonly used to speed up these
workloads. All major cloud providers, such as Google [2],
Amazon [3], Microsoft [4], and IBM [5], offer their solu-
tions with GPUs. Even large enterprises and research insti-
tutions are also building their own private cloud data center
to accommodate such use cases internally.

In private or public cloud, such solutions usually provi-
sion dedicated GPGPUs for VM instances to meet the high
performance requirement. But this may not be cost-effective.
The consumption of GPGPUs may follow the same diurnal
pattern like other resources in data centers [6–8]. That is,
the resource may be underutilized during certain time pe-
riods. From cloud providers’ perspective, sharing those ex-
pensive GPGPUs among multiple users is a more cost effec-
tive solution. From users’ perspective, these dedicated GPUs
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in cloud are still quite expensive. For example, an Amazon
EC2 Instance with one dedicated NVIDIA Tesla V100 costs
$3.06/hour, and a regular Amazon EC2 Instance with similar
configuration without GPU only costs $0.34/hour. In many
cases, such as VDI, ML inferencing and development, ded-
icated GPUs may not be required. Sharing GPUs at a lower
cost could fit a lot of such cases for cloud customers.

However, sharing a GPU may cause interference between
co-located workloads and lead to performance degradation.
Previous works either focus on GPU performance problem
in bare-metal environments [9–11], or providing functional
support to share GPU in bare-metal [12, 13] or virtual en-
vironment [14–16]. The performance problems on GPUs in
virtual environments has not been thoroughly studied.

We designed an interference-aware scheduler that oper-
ates at the cluster level to reduce interference between co-
located VMs that share GPUs. We characterize the inter-
ference, and use machine learning techniques to model the
interference between the co-located VMs. And the sched-
uler uses this model to place VMs to minimize interference.
Specifically, in this paper, we made two contributions:

• We conducted a thorough study to understand the perfor-
mance characteristics of NVIDIA vGPU, which has not
been thoroughly studied before. Such a study revealed
interesting characteristics of NVIDIA vGPU. The exper-
iments show that our observations from this study help
improve the prediction accuracy on the interference.

• We proposed an interference aware scheduler for cloud
virtual environments that schedules VMs to reduce the
interferences between co-located vGPU VMs. We con-
structed several machine learning models to estimate the
interference. Experiments show that our models reduce
the overall workload run time by 24.2%.

2. Background and Motivation
Cloud computing and virtualization for emerging work-
loads. Workloads like HPC and machine learnings requires
high performance. Recently, as hardware and software tech-
nology keeps advancing, we observe a trend where these
workloads are migrating to both private cloud [17, 18] and
public cloud [19]. On hardware side, an increasing num-



ber of hardware accelerators become available to provide
high performance for these workloads, such as GPGPU,
FPGA [20–22], Intel QuickAssist Technology [23] and Re-
mote Direct Memory Access (RDMA) devices. On software
side, private and public cloud platforms provide many well-
know benefits such as provisioning flexibility, management
efficiency, and security isolation. The core technology in
cloud computing, virtualization, is also advancing to better
leverage these hardware accelerators for performance gain.
For example, VMware ESXi provides VMDirectPath I/O
mode (or passthrough mode) that allows these hardware ac-
celerators to be directly accessed from guest VM [24] to
achieve near bare-metal machine performance. Tradition-
ally, passthrough mode is not compatible with virtualization
features such as live migration. But this issue is being ad-
dressed in both academia and industry [25–27]. Therefore,
we believe that cloud and virtualization now can provide
both performance and functionalities that are required for
these emerging workloads.

GPGPU sharing. In bare-metal environments, GPU
sharing is mainly controlled by OS level driver framework
as shown in Figure 1 (a). GPUs support concurrent kernel
(CUDA functions that are executed on GPUs) executions
within the same application. NVIDIA provides Multiple
Process Service (MPS) [13] further improves concurrency
by allowing multiple applications to execute kernels con-
currently on GPUs. In MPS mode, kernels from different
applications are not isolated, so it has potential issues about
security, e.g., side channel attack in GPU [28]. API remot-
ing is another approach to share GPUs among remote clients
[12, 29], but clients are limited by the APIs that are provided
by the frameworks.

In virtual environment, a common way to share GPUs is
virtualizing the hardware [14, 15]. The common architec-
ture is shown in Figure 1 (b). Virtualizing GPUs are non-
trivial work. It also add an layer of indirection in the hy-
pervisor, and cause performance overhead. NVIDIA vGPU
uses a quite unique mechanism, called mediated passthrough
[30], to share GPUs as shown in Figure 1 (c). In vGPU
mode, the hypervisor manages the control path of the GPU
to achieve device sharing, VMs can directly access the data
path as if they were accessing a dedicated GPU. Our per-
formance evaluation on eight ML benchmarks shows that
vGPU has comparable performance with passthrough GPU
when running a single VM. Six of them do not have perfor-
mance difference, and two of them have difference within
5%. Also, on VMware ESXi, VMs with vGPU are compat-
ible with virtualization features such as live migration and
suspend/resume [31, 32]. Therefore, in this paper, we choose
to use this platform.

vGPU interference problem. In virtual environments,
multiple VMs may use vGPU at the same time, and caus-
ing interference to each other. We conduct the experiments
using applications and the setup in Section 6. Figure 2 shows
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Figure 1. Bare-metal vs virtual vs Mediated Passthrough

the increased runtime of machine learning workload dcgan
when it is co-located with another workload in vGPU mode.
There are two observations from the results: 1) the interfer-
ence can be very high - 220% when dcgan is co-located with
word language processing. We should design our system to
reduce such interference; 2) interference varies by work-
loads - when co-located with alexnet or mnist, the overhead
for dcgan is almost negligible. This provides an opportu-
nity to reduce interference by carefully selecting co-located
workloads to minimize interference. This result motivated us
to design an interference-aware VM scheduler at the cluster
level to minimize interference.
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Figure 2. Interference for dcgan

One unique behavior of NVIDIA vGPU is that VMs time-
shares GPU cores, and the context switch between VMs is
enforced by hardware preemption. Such hardware preemp-
tion is not support before the Pascal architecture. Our exper-
iment with simple GPU kernels show that context switches
can cause up to 30% overhead. Due to space limitations, we
omit the experiment details and figures.

3. Related Work
Resource scheduling in multi-tenant environments is an im-
portant topic, and various solutions have been proposed
in both academia [33, 34] and industry [35]. Many work
are focusing on CPU, memory, networking and storage re-
source. GPUs as a different compute resource become in-
creasingly commonly for workloads requiring high perfor-
mance. Therefore, resource scheduling should also taking
GPUs into account.

In bare-metal environments, Prophet [10] and Baymax
[9] focus on the application QoS problem for non-preemptible
GPUs. It constructs performance models to predict kernel
run times so that it can better schedule kernel executions to
improve QoS. Mystic [11] focuses on the shared GPUs us-
ing rCUDA and MPS. It uses an analytical model to predict
workload performance, and develops a scheduler based on
the model to reduce interference between applications.



The high level idea of our paper is similar to these works
- modeling the interference for better GPU job scheduling.
But the approach to constructing models is quite different
because the unique performance characteristics of vGPU.
In MPS, concurrent kernel executions create interference at
very fine-grain level such as L1/L2 cache because kernels
accessing these resources at the same time. But vGPU has
a better context separation, and therefore interference char-
acteristics is expected to be different. For non-preemptible
GPUs, kernels are not preempted as often as preemptible
vGPU. Therefore, the context switch overhead is expected
to be different as well.

In virtual environments, Pegasus [16] proposed a sched-
uler that is implemented in the hypervisor (driver domain)
for virtualized GPUs to improve performance. It applies
to para-virtualization mode GPUs only, not for mediated
passthrough. Because the datapath in mediated passthrough
are directly exposed to VM, not managed by the hypervi-
sor (which provides the performance advantage). Therefore,
the hypervisor cannot control the job submission. Prophet
and Baymax proposed the schedulers that are on the CUDA
job submission path, so they are not suitable for mediate
passthrough GPU for the same reason. Therefore, we need
to conduct new studies to understand the inference mech-
anism for mediated passthrough vGPU particularly. Also,
we need scheduler at a higher level that works for mediate
passthrough GPUs.

4. System Architecture
We proposed a cluster-level interference-aware VM sched-
uler. The architecture is shown in Figure 3. The system con-
sists of an offline application profiling stage, and an offline
model training stage, and an online VM scheduler. We lever-
age analytical techniques and machine learning techniques
to construct models that quantify the application interfer-
ence. We assume that each VM only host one application.
At the application profiling stage, we run the applications to
collect the statistics when each application is running alone
without any interference. These characteristics are selected
to reflect intrinsic system runtime behaviors (CPU, memory,
GPU utilization, etc). The statistics are stored in a database
with a label for the application so that they can be easily re-
trieved when by the scheduler. At the model training stage,
we run applications when interference presents to collect ap-
plication run times. The inputs of models are application
statistics, and the output is the interference (quantified based
on the run time of applications). At scheduling stage, the
scheduler obtain statistics from the database and uses the
models to evaluate the interference on all possible hosts to
find the host with least interference. The key components in
the system are identifying the appropriate statistics to reflect
GPU performance, and constructing the models. In the fol-
lowing section, we discuss how to achieve that.
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Figure 3. System Architecture

5. Experiment Setup
Experiments are done on a 2-socket Supermicro machine
with two 12-core Intel Xeon E5-2680 v3 2.5GHz GPU, 128
GB memory, and one NVIDIA Tesla P100 16GB GPU with
a 390.42 NVIDIA vGPU driver. We set up two VMs, each
with 8 VCPUs and 16GB memory, 64 GB disk, Ubuntu
16.04, and CUDA 9.0. VMs use either 8GB profile (2 VMs
per GPU) or 4GB profile (4 VMs per GPU) depending on
experiments. The vGPU scheduler is set to best effort if not
explicitly specified since this is the default scheduler and
enable maximum device utilization. We use this same setup
for all experiments throughout this paper.

6. Performance Characterization
The interference model must be able to capture the intrinsic
system level behaviors that can reflect application interfer-
ence on GPUs. We develop microbenchmarks with different
intensity levels of GPU core utilization, GPU memory uti-
lization and PCIe bandwidth utilization. We conducted ex-
periments and measured that the context switch time slice is
about 1ms. To see how this time slice affect kernels with
different lengths, we use two microbenchmarks to stress
GPU cores: short kernel (kernel length <1ms) and long ker-
nel (kernel length >1ms) to evaluate the impact of context
switches on kernels with different lengths. Each type of mi-
crobenchmark has three stress levels: high (H), medium (M)
and low (L). For GPU core (or GPU memory) utilization,
the three levels are 100%, 50% and 25% for reported GPU
(or GPU memory) utilization. For PCIe bandwidth, the three
levels are 10GB/s, 7GB/s and 5GB/s.

We run one microbenchmark in each VM, and run two
VMs simultaneously with vGPUs. With one microbench-
mark repeatedly running in one VM (background), we mea-
sure the other microbenchmark’s run time in the other VM
(foreground). The results are shown in Figure 4. Each bar
in the figure represents the normalized run time of that fore-
ground microbenchmark, based on its run time without inter-
ference. The X-axis is the background microbenchmark that
causes interference. We summarize the observations from
the figures below.

In figure (a), the short kernels are severely affected by the
long kernels and the memory benchmarks, and the run times
increase by 2X ˜ 11X. The short kernels are also affected by
the short kernels, and the run times increase by 13% ˜ 2.7X.
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Figure 4. Microbenchmarks under interference

The short kernels are not affected by PCIe benchmarks. In
figure (b), the long kernels also show the similar trend as
the short kernels, but the scale is smaller. The maximum
increase in the run time is around 2X. The reason why the
short kernels experience a higher overhead is because of the
way the best effort scheduler works. Figure 5 illustrates how
the short kernels are executed on the GPU when there are or
no co-located long kernels.
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Figure 5. Short kernels running in best effort scheduler

When there is no interference (the baseline of this ex-
periment), multiple short kernels can be finished consecu-
tively in one time slice. When there are co-located long ker-
nels, once a short kernel finishes, the short kernel bench-
mark switches to CPU task and long kernel starts to run on
the GPU for 1ms. During this time, even if the short kernel
benchmark finishes its CPU task and wants to run its next
short kernel on the GPU, it must wait until the next context
switch. On the other hand, when the long kernels are affected
by the short kernels, they are only interrupted briefly by short
kernels. Therefore, the short kernels show higher overheads

than the long kernels. Note that in real applications the over-
head also depends on the timing when kernels are issued to
the GPU. For example, if this short kernel workload has a
longer CPU task, the kernel execution on the GPU may be
perfectly interleaved between two kernels, and the overhead
won’t be so high. The exact amount of overhead for real
world applications is difficult to determine through analyz-
ing applications’ each kernel execution. This motivates us to
use modeling techniques to capture the high-level character-
istics of the applications and estimate the overhead. Obser-
vation: Interference that is caused by context switches
depends on the kernel lengths of co-located workloads
and the timing when kernels are issued to the GPU.

In figure (c), the GPU memory benchmarks can be af-
fected by the same memory activities, and the run times in-
crease to more than 2X. Different memory utilizations cause
similar overhead. Kernel executions also cause overhead,
and longer kernels with higher utilizations cause high over-
head. Observation: Memory accesses can be affected by
both kernel executions and memory activities. In figure
(d), the PCIe benchmarks are not affected by kernel exe-
cutions or memory activities, but are only affected by PCIe
benchmarks. Observation: PCIe data transfer is less likely
to be affected by GPU core and memory activities.

To summarize our observations, the mechanisms that
cause the interference to co-located workloads are compli-
cated. It is difficult to quantitatively deduce the interfer-
ence just based on these observations. This motivates us to
use machine learning techniques to construct mathematical
models to predict the interference. These observations are
essential for accurate models.

7. Model Interference
To model vGPU interference, we first select the features as
model inputs based on our observations, and then construct
classification and regression models. We demonstrate how to
leverage our observations to improve the model accuracy.

Feature Selection. To construct models, we first need to
identify a set of software and hardware characteristics that
are closely related to interference based on our observations.
The selected features are in Table 1.

Table 1. Three feature sets
Features

Base GPU util, GPU mem util, PCIe read/write b/w
Extend GPU util, GPU mem util, PCIe read/write b/w,

VCPU, VM mem, avg num threads,
avg kernel length, avg long kernel length,
long/short kernel ratio

Select GPU util, PCIe read/write b/w, PCIe write b/w,
VCPU, VM mem, avg kernel length

Intuitively, the features in the base set can be used to con-
struct models. Based on our observations above, we add a



feature to characterize the kernel compute intensity: the av-
erage number of threads, features to characterize both ker-
nel lengths and kernel execution’s timing, features to char-
acterize kernel lengths: the average kernel length, the aver-
age long kernel length, and the ratio of the total number of
the long kernels and the total number of the short kernels.
The timing of kernel executions is difficult to represent. We
choose to include vCPU utilization and VM memory uti-
lization as 2 features, because these two statistics, combined
with GPU statistics, represent the interaction between CPU
tasks and GPU kernels. So they can reflect the timing of ker-
nel executions at the high level. We also define the select
set which is a refined set with fewer features, but we believe
they may still present workloads characteristics based on our
previous observations.

We collect features either through ESXi, Nvidia-smi, or
nvprof, when the workload runs alone. Since nvprof is not
supported in vGPU mode, we run workloads in passthrough
mode to get detailed statistics about kernels. Note that the
purpose of nvprof is to collect workloads’ intrinsic software
characteristics, so it does not have to be in vGPU mode.

Model Construction. The model output is interference
which is represented by the run time overhead. We collect a
workload’s run time when it is co-located with every other
workload running repeatedly. That is, we collect workload
A’s run time with workload B running repeatedly, and repeat
this experiment by replacing B with other workloads. This
overhead is normalized based on its run time when it runs
alone. We select seven machine learning workloads from Py-
torch [36] and Tensorflow [37], and run two batch sizes for
each workload, so in total we have 14 workloads. We did 5-
fold cross validation with 80% training data and 20% testing
data. We constructed a random forest regression model and
a linear regression model. Table 7 shows the mean square
errors (MSE) when using different feature sets for the two
models.

Table 2. Regression models’ MSEs
Base Extend Select

Random forest 0.151 0.129 0.122
Linear 0.355 0.213 0.207

The random forest model achieves lower MSE than the
linear model. This is not surprising given the complicated
interference mechanism. For each model, the extend feature
set achieves a better accuracy than the base feature set -
15% reduction in MSE for the random forest model and
40% reduction for the linear model. It means the additional
features improves the models, and demonstrates that our
characterization helps the modeling process effectively. The
select feature set achieves similar as the extend feature set,
suggesting the select features are the most relevant ones
to interference. This also aligns with our observations. We
also constructed classification models using random forest,
decision tree, naive Bayes, and k-nearest neighbors. These

models also show good accuracy with the average F-scores
around 0.6 to 0.8. F-scores is a measure of model accuracy
considers both the precision and the recall. Its best value
is 1 and its worst value is 0. The good accuracy of these
models suggests that there is a strong correlation between
the features that we selected based on our observations and
the interference, and it is possible to predict the interference.

Note that we construct models for vGPU, not for work-
loads. The purpose of the workloads is stressing various
components of the GPU. While having more data from more
workloads are useful, it is not necessary to run all ML ap-
plications to build models. It is possible to use a set of mi-
crobenchmarks to create synthetic workloads to stress the
GPU. We construct the models for one vGPU profile. We can
use the same approach to construct a model for each vGPU
profile. Or we can consider the number of current running
VMs as a model feature to just construct one model that fits
all possible profiles. This is worth further investigation.

Evaluation. To further demonstrate the benefit of charac-
terization and our prediction models, we design an interference-
aware scheduler that leverages our models for VM place-
ment. Using outputs from the random forest regression
model, the interference-aware scheduler places VMs on
hosts in a way that minimizes interference. In addition, we
design a simple round-robin scheduler and an ideal sched-
uler that are based on the actual and predicted interference
data respectively. Using the actual interference data allows
us to achieve the lowest overhead under the same schedul-
ing policy. If predicted data is effective, the results should
be close to this theoretical limit. The experiment simulates
a cluster with 50 hosts, each of which has one GPU that
supports two VMs, for a total of 100 VMs that utilize the
full capacity of the cluster. The interference is evaluated by
aggregating the individual interference of each co-located
VM. The workloads are randomly generated from the afore-
mentioned 14 workloads, and we repeat this experiment 100
times. The average overhead reduction is 28.5% for the ideal
scheduler and 24.2% for the random forest scheduler.

8. Conclusion
In this paper, we proposed a cluster level interference-aware
VM scheduler. We show our methodology to characterize
and predict the interference between workloads that use
NVIDIA vGPU. We made observations that help us em-
ploy machine learning techniques to construct prediction
models. The results show that our interference-aware sched-
uler based on our models can effectively reduce application
run-time overhead by 24.2%.
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10. Discussion Topic
Note that there are more run time statistics that can be con-
sidered in the performance characterization such as L1/L2
cache miss/hit ratio, GPU TLB hit/miss ratio, etc. Those ar-
chitectural statistics may or may not be relevant because we
do not know exactly how context switch impacts those com-
ponents, e.g., whether it cleans up GPU TLB or L1 cache.
Since nvprof in vGPU mode is not supported, it is difficult
to do the detailed analysis. We may use more microbench-
marks to evaluate the high-level performance characteristics.
This is worth further exploration.

Current modeling process produce one model per vGPU
profile, because different profile support different number
of VMs. In fact, the profile can be a feature in the model
(quantified by the number of running VMs and vGPU mem-
ory size). Then, we only need one model per one type of
GPU. The applications in the experiments are used to exer-
cise GPUs, so we want to have reasonable amount of data
to cover various behaviors, e.g. high and low utilizations,
number of threads, etc. But the modeling approach does not
require us to run all applications in all possible combinations
to be effective. We can periodically re-construct the model to
make sure new applications with new patterns are included.

We assume one application per VM. This assumption
may not be true for all clusters. If the workload can change
over time while a VM is running and generate a different in-
terference behavior, the new interference pattern won’t be
predicted by scheduler. Such dynamic behaviors must be
monitored by an online interference detector. The detector
can rely the aforementioned infrastructure to collect the sys-
tem run-time statistics. It may be as simple as monitoring
GPU resource utilization and send the notifications when
they are heavily utilized. Or a more intelligent detector may
be built to detect interference by examining various system
states.

This paper is based on NVIDIA vGPU and VMware
ESXi, which are proprietary products. However, we believe
that the framework proposed here are generally applicable to
other products. Because our characterization approach treat
GPU as a black/grey box, and the statistics we collected are
at high level.
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